Size-exclusion high performance liquid chromatography of native trypsinogen, the denatured protein, and partially refolded molecules. Further evidence that non-native disulfide bonds are dominant in refolding the completely reduced protein.
نویسندگان
چکیده
Size-exclusion high performance liquid chromatography was used to compare the Stokes radius of the mixed disulfide of trypsinogen refolded for 10 min with the Stokes radius of denatured trypsinogen in high concentrations of urea. After folding for 10 min, rechromatography of a collection of sequential fractions of an initial separation showed that the fractions display microheterogeneity as seen in the value of the Stokes radius of each fraction. These intermediate species differed in their Stokes radius, and each had a globular structure cross-linked by disulfide bonds. In contrast, when trypsinogen with the native disulfides intact was equilibrated at different concentrations of urea (0-8 M), a progressive increase in Stokes radius was observed with extent of unfolding. Rechromatography of a series of fractions collected at a specific urea concentration showed that each had the same Stokes radius as the fraction in the initial separation. Urea-denatured trypsinogen and partially refolded trypsinogen must therefore differ in the disulfide pairing that links regions of the polypeptide chain. These observations support the suggestion that non-native disulfide bonds are responsible for the many stable conformations that form early in the folding of the mixed disulfide of trypsinogen (Light, A., and Higaki, J.N. (1987) Biochemistry 26, 5556-5564). These intermediates initially are loose structures (large Stokes radius) that become more compact with time (decreasing Stokes radius). The intermediates must therefore undergo a continuing disulfide interchange until native disulfides form late in the process when the stable conformation of the native molecule is reached.
منابع مشابه
Refolding of bovine trypsinogen with one and two disulfide bonds reduced and carboxymethylated.
The role of specific disulfides in the refolding of bovine trypsinogen was examined with samples of the protein lacking one and two disulfide bonds. Disulfide 179 to 203 was reduced with 0.1 M sodium borohydride and the same bond and disulfide 122 to 189 was reduced with 0.002 M dithioerythritol. The newly formed sulfhydry1 groups were converted to the “‘C-labeled diand tetracarboxymethyl deriv...
متن کاملRecombinant human retinol-binding protein refolding, native disulfide formation, and characterization.
Human retinol-binding protein (RBP) is a monomeric 21-kDa protein that is currently the subject of numerous studies owing to its role in the cellular uptake and utilization of retinol. When the RBP gene is overexpressed in Escherichia coli, inclusion bodies of aggregated RBP are found in the cells. These inclusion bodies are solubilized in 5.0 M GdmCl containing 10 mM DTT. Refolding of RBP is c...
متن کاملRefolding Process of Cysteine-Rich Proteins: Chitinase as a Model
Background: Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain nat...
متن کاملProduction and purification of refolded recombinant human IL-7 from inclusion bodies.
A recombinant form of human rhIL-7 was overexpressed in Escherichia coli HMS174 (DE3) pLysS under the control of a T7 promoter. The resulting insoluble inclusion bodies were separated from cellular debris by cross-flow filtration and solubilized by homogenization with 6 M guanidine HCl. Attempts at refolding rhIL-7 from solubilized inclusion bodies without prior purification of monomeric, denat...
متن کاملRefolding of denatured and denatured/reduced lysozyme at high concentrations.
Refolding of proteins at high concentrations often results in aggregation. To gain insight into the molecular aspects of refolding and to improve the yield of active protein, we have studied the refolding of lysozyme either from its denatured state or from its denatured/reduced state. Refolding of denatured lysozyme, even at 1 mg/ml, yields fully active enzyme without aggregation. However, refo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 263 18 شماره
صفحات -
تاریخ انتشار 1988